The proportional lack of archaeal pathogens: Do viruses/phages hold the key?
نویسندگان
چکیده
Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control.
منابع مشابه
Archaeal Viruses, Not Archaeal Phages: An Archaeological Dig
Viruses infect members of domains Bacteria, Eukarya, and Archaea. While those infecting domain Eukarya are nearly universally described as "Viruses", those of domain Bacteria, to a substantial extent, instead are called "Bacteriophages," or "Phages." Should the viruses of domain Archaea therefore be dubbed "Archaeal phages," "Archaeal viruses," or some other construct? Here we provide documenta...
متن کاملEvolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملDo phages impact microbial dynamics, prokaryotic community structure and nutrient dynamics in Lake Bourget?
Phages are the most abundant and diversified biological entities in aquatic ecosystems. Understanding their functional role requires laboratory experiments on a short time-scale. Using samples of surface waters of Lake Bourget, we studied whether viruses impact (i) the abundance patterns of the bacterial and phytoplankton communities, (ii) a part of the prokaryotic community composition (both f...
متن کاملHigh-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of antarctic soils.
The metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic viruses (i.e., phages) repres...
متن کاملPutative archaeal viruses from the mesopelagic ocean
Oceanic viruses that infect bacteria, or phages, are known to modulate host diversity, metabolisms, and biogeochemical cycling, while the viruses that infect marine Archaea remain understudied despite the critical ecosystem roles played by their hosts. Here we introduce "MArVD", for Metagenomic Archaeal Virus Detector, an annotation tool designed to identify putative archaeal virus contigs in m...
متن کامل